

WBS 3.1 - Trigger

Wesley Smith, *U. Wisconsin* CMS Trigger Project Manager

DOE/NSF Review May 19, 1998

Outline

- Overview of Calorimeter Trigger
- Overview of Muon Trigger
- Organization
- Cost Estimate
- Scope and Contingency Since Last Review
- WBS, Milestones, and Schedule
- Commitment and Resource Profiles
- Status & Progress
- Committee Concerns and Corrective Actions
- Summary and Conclusions

Calorimeter Triggers

3 x 3 sliding window centered on ECAL/HCAL trigger tower pairs Tower count = 72φ x 54η x 2 = 7776 Jet E_t from sum of ECAL& HCAL trigger tower E_t in non-overlapping 4x4 regions (also used for E_x , E_y , E_t , E_t^{Miss}) Use multijet triggers
Jet candidates are sorted to find highest energy jets

Calorimeter Trigger Overview

Regional Calorimeter Crate

(WBS 3.1.2)

Data from calorimeter FE on Cu links @ 1.2 Gbaud

- Into 152 rear-mounted Receiver Cards (proto. being built)
 160 MHz point to point backplane (proto. built)
 - 19 Clock&Control (proto. built), 152 Electron Identification, 19 Jet/Summary, Receiver Cards operate @ 160 MHz

3.1.2.8: Receiver Card

(prototype being built by U. Wisconsin)

Input Cable Connectors

Rear:

32 Channels =

4 Ch. x 8 daughter cards 1.2 GBaud copper rcvrs

18 bit (2x9) data + 5 bit error

Vitesse Chip:

Converts Serial to Parallel

Front: Data from Rear @ 120 MHz TTL

Phase ASIC: Deskew, Mux @ 160MHz

Error bit for each 4x4, Test Vectors

Memory LUT @ 160 MHz

Adder ASIC:

8 inputs @ 160 MHz in 25 ns. (built!)

Differential Output@160 MHz

Electron ID & Jet/Summary Cards

(U. Wisconsin)

Processes 4x8 region @ 160 MHz Electron isolation on ASIC Lookup tables for ranking Takes Max in each 4x4 **Summarizes full crate:**

Sorts 32 e's,4x4 $E_t \rightarrow top 4$ e's, jets LUTs: E_x & E_y from E_t for 4x4 area Adder tree for E_t , E_x and E_y sums Quiet/MinI bits for each 4x4 region

Physics at low luminosity

(Luminosity = 10^{33} cm⁻² s⁻¹)

					•		•					
Trigger	Trigger		Rate	(kHz)		Process	Efficiency (%)					
Trigger Type	Et Cutoff	CM	ISIM	FAS	TSIM	Flocess	CMS-TN-95/183 FASTSIM CMSIM \rightarrow e X \rightarrow 99 \rightarrow 97 \rightarrow H+ X \rightarrow t X \rightarrow 99 \rightarrow 94 \rightarrow (hadronize), B \rightarrow e X \rightarrow 0.2 (But 400Hz) \rightarrow 45 - 98 \rightarrow 98 \rightarrow - \rightarrow 45 - 98 \rightarrow 30 - 96 \rightarrow 39 - 96	CMSIM				
Турс	(GeV)	Individual	Incremental	Individual	Incremental	$p p \to t t \to e X$						
Sum Et	150	1.0	1.0	1.2	1.2	$p p \rightarrow t t \rightarrow H+ X \rightarrow t X$	99	94	94			
Missing Et	40	2.7	1.7	3.1	2.0	$p p \rightarrow b b \text{ (hadronize)}, B \rightarrow e X$	0.2 (But 400Hz)	-	-			
Electron	12	11.4	9.1	5.4	4.4	SUSY CMS TP Scenario A						
DiElectron	7	1.2	1.9	0.4	1.0	(MLSP = 45, Mspart ~ 300 GeV)	98	-	-			
Single jet	50	1.5	0.3	1.8	0.6	SUSY Neutral Higgs	45 - 98	30 - 06	30 - 06			
Dijet	30	1.3	0.3	1.7	0.4	(Range of tan b and M⊢ values)	43 - 30	30 - 90	39 - 96			
Trijet	20	0.8	0.1	1.1	0.1							
Quad jet	15	0.6	0.04	0.8	0.1	Signal efficiency						

QCD Background

15 & 9

Jet+Elctrn

Cumulative Rate

CMSIM and FASTSIM rates are compared for the low luminosity E_t cutoffs. Electron trigger rate is twice as high in CMSIM results

11.2

17.8

5.6

11.8

3.4

High efficiency is realized for the benchmark processes involving top decays and SUSY sparticles.

Notes:

A dedicated tau trigger is under study to improve efficiency for the low mass range of SUSY Higgs. There is also high rate of B signal in level-1 sample.

Physics at high luminosity

Luminosity = 10^{34} cm⁻² s⁻¹

Trigger Type	Trigger Et		Rate	(kHz)			Efficiency (%)						
	Cutoff	CM	ISIM	FAS	TSIM	Process							
71	(GeV)	Individual	Incremental	Individual	Incremental		CMS-TN-95/183	FASTSIM	CMSIM				
Sum Et	400	0.3	0.3	0.4	0.4	H (80 GeV) $\rightarrow \gamma \gamma$	97	92	94				
Missing Et	80	1.2	0.9	1.7	1.3	H (120 GeV) \rightarrow Z Z \rightarrow e e μ μ	76*	76*	74*				
Electron	25	11.4	9.3	4.5	3.9								
DiElectron	12	2.1	1.8	1.0	1.0	H (200 GeV) \rightarrow Z Z \rightarrow e e j j	99	96	95				
Single jet	100	1.5	1.0	2.0	1.3	$p \; p \to t \; t \to e \; X$	88	82	82				
Dijet	60	1.2	0.7	1.9	1.1	$p p \rightarrow t t \rightarrow H_+ X \rightarrow t X$	82	76	76				
Trijet	30	2.3	1.3	3.1	1.8	ρρ → ττ → τι ι τ Α - τ Λ	02	70	10				
Quadjet	20	2.6	1.1	3.3	1.4	SUSY CMS TP Scenario A (MLSP = 45, Mspart ~ 300 GeV)	83#	-	- 				
Jet+Elctrn	50 & 12	1.3	0.3	0.7	0.2	Signal Efficience	<u> </u> 						

12.4

QCD Background

Cumulative Rate

The sum & missing E, cutoffs chosen to yield 2 kHz rate.

16.7

~8 kHz rate out of total available 15 kHz. Remaining 5 kHz available for jet triggers.efficiency

High efficiency for all channels with electrons and photons.

The difficult-to-trigger top decay events have high efficiency, enabling studies of Electron/photon triggers are emphasized, associated Higgs production.

*Inclusion of muon trigger gives full

Muon Chamber Trigger

EMU: (3 stns): 2016 Strip Cards, 1800 Wire Cards, 432 Motherboards

TRIGGER: 48 Port Cards, 336 Data Links, 8 Track Finder Crates

CSC Trigger Port Cards

(WBS 3.1.1.1)

CSC Muon Trigger Geometry

CSC Track-finding:

- Two Types of Crates:
 - 4 Overlap Crates
 - 4 CSC-only Crates

Two Sector Processors

SP-Overlap: CSC's & Barrel DT's

SP-CSC: CSC's only

One Receiver Card: DT & CSC

CSC & Overlap TF Block Diagram

Muon & Cal Trigger Rates

Low & High Luminosity:

	L=	10 ³³ cm	-2 _s -1	$L = 10^{34} cm^{-2} s^{-1}$						
trigger type	threshold [GeV]	rate [kHz]	cumulative rate [kHz]	threshold [GeV]	rate [kHz]	cumulative rate [kHz]				
μ	7	9.8	9.5	20	7.8	7.8				
μμ	2-4	0.5	10.1	4	1.6	9.2				
μ e/γ	2-4, 6	2.5	12.2	4, 8	5.5	14.4				
μe _b	2-4, 5	3.5	13.4	_	_	_				
μј	2-4, 12	2.2	14.5	4, 40	0.3	14.4				
μ E _t ^{miss}	2-4, 40	0.8	14.7	4, 60	1.0	15.3				
μ ΣΕ _t	2-4, 150	0.8	14.7	4, 250	0.2	15.3				

threshold = 2-4 GeV means: 4 GeV in the barrel, 2 GeV in the endcaps

muon threshold = transverse momentum threshold calorimeter threshold = transverse energy threshold

 e/γ — electron/photon trigger, e_b — trigger on electron from b-quark decay

U. S. Trigger Organization

Trigger Project Management

CMS Annual Reviews

- April: TriDAS Status
 - Progress, draft R&D plans & expenses for next year
- November: TriDAS Internal Review
 - R&D Plans/Progress, Cost & Schedule, Milestones
 - Finalize R&D plans & expenses for next year
 - Internal CMS Review w/CMS referees
- Internal Electronics Reviews by LHC Electronics Board CMS Reps.
 - G. Hall (Imperial), G. Stefanini (CERN), W. Smith (Wisc.)
 - Reports to CMS Management Board (next trigger review in Fall '98)

US Reviews/Reporting

- Monthly Video Conferences:
 - Florida, Rice, UCLA, Wisconsin, Davis (sim)
 - Review Progress, milestones, simulation activities
- Integration Meetings:
 - Calorimeter Trigger: FNAL, Maryland, Wisconsin
 - Muon Trigger: Ohio, Florida, Rice, UCLA, Wisconsin, others.
- Annual Site Visits: Florida, Rice, UCLA

Calorimeter Trig. Costs at L4

WBS	ITEM BAS	SE(K\$)C	ont(%) T	ΓΌΤΑL (K\$)
3.1.2	Cal.Regional Trigger	4,388		6581 ′
3.1.2.1	Prototypes	441	46	643
3.1.2.2	Preproduction ASICs	553	47	811
3.1.2.3	Test Facilities	78	50	117
3.1.2.4	Power Supplies	82	30	106
3.1.2.5	Crates	35	30	<mark>45_</mark>
3.1.2.6	Backplane	194	54	299
3.1.2.7	Clock & Control Card	132	40	185
3.1.2.8	Receiver Card	1,670	54	2571
3.1.2.9	Electron ID Card	744	50	1116
3.1.2.10	Jet Summary Card	170	50	254
3.1.2.11	Cables	7	30	9
3.1.2.12	2DAQ Processor			
3.1.2.13	Crate Monitor Card			
3.1.2.14	Trigger Tests	282	50	423
3.1.2.15	Project Management			
Change	es since last May 1997	Review:		

- Contingency analysis performed at lowest level (increased from 39->50%)
- Bottoms-up recosting & new WBS (no substantial net cost change)
- Cost profile pushed back 6 months on average

Muon Trigger Costs at L4

WBS	ITEM	BASE	(K\$) C	Cont(%) -	TOTAI	L (Ł	(\$)		I	1	
3.1.1	CSC Muon Trigge	r 1	,749	5	4	2687		-				
3.1.1.1	Muon Port Cards	(MPC)	507	5)	760						
3.1.1.2	Sector Receivers	(SR)	410	5)	615						
3.1.1.3	CSC Sct. Pr.(SP-0	CSC)	246	6	5	406						
3.1.1.4	Over. Sct. Pr.(SP-	OVR)	246	6	5	406						
3.1.1.5	Clock&Ctrl Cds (C	CC)	114	4)	159						
3.1.1.6	Crate Monitor Car	ds	10	5)	15						
3.1.1.7	Muon Backplanes		80	5)	120						
3.1.1.8	Crate Controllers		35	5)	53						
3.1.1.9	Muon Crates		6	5)	9						
3.1.1.10	Muon Power Supp	olies	23	5)	3 5						
3.1.1.11	Additional Cables		30	5)	45						
3.1.1.12	2Trigger System Te	ests	43	5)	64						
3.1.1.13	BTrigger Proj. Mana	age.	0									
	4.0	0 T D				V		,	/	/	/	

Changes since last May 1997 Review:

- Contingency analysis performed at lowest level (increased from 39->50%)
- New Architecture & removal of 4th station reduces cost (see next transp.)
- Bottoms-up recosting & new WBS (small cost reduction)
- Cost profile pushed back 6 months on average

Cal. Trig. Schedule & Milestones

19	96	199	97	19	98	19	99	20	00	20	01	20	02	20	03	20	04	20	05
Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr
Star	t Pro	to. B	ds.	Oc	t 1														
Start	ASI	C Dev	⁄el. ⋈	Oc	t 1														
In	terna	l Des	ign F	Revie	w 1	Oc	t 14												
	Pro	ototy	pe De	esign	Finis	shed	♦ N	lay 2	7										
		Inte	ernal	Desi	gn R	eview	ı 2 🌗	Sep	9										
	Pro	oto. B	oard	s & T	ests	Finis	hed	♦ N	ov 11	:									
			Ве	gin A	SIC	Prepr	oduo	tion	♦ M	lay 19	9								
			Be	gin B	ackp	lane	& Cra	ite Pi	roduc	tion	♦ M	ay 18	3						
					ASI	C Dev	/elop	ment	Com	plete	•	Jun 2	9						
						Fini	sh A	SIC F	repro	oduc	tion	♦ Od	t 19						
						Begi	n Tri	gger	Board	d Pro	ducti	on (Ma	r 25					
								В	egin .	ASIC	Prod	luctio	n 🔷	Aug	13				
							C	rate a	& Bac	kpla	ne Co	omple	ete 🐗	Sep	16				
								Begi	n Pro	duct	ion B	oard	Test	S ♦	Jan 1	4			
											Des	igns	Finis	hed	♦ M	ay 6			
											Finis	h AS	IC Pr	oduc	tion	N	ov 18	}	
									F	inish	Trig	ger E	oard	Proc	ductio	n 🔷	Feb	26	
										Fin	ish F	rodu	ction	Boa	rd Te	sts •	▶ Ap	r 8	
											Ве	gin T	rigge	r Ins	tallat	ion (▶ Ap	r 9	
											1	rigge	er Ins	tallat	ion F	inish	ed •	Se	p 30

Muon Trig. Schedule & Milestones

1996	1997	19	98	19	99	20	00	20	01	20	02	20	03	20	04	2005	
Oct Apr	Oct Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr	Oct	Apr
Finish	Initial De	sign	♦ M	ay 13	}												
Begin	Prototype	Des	ign 🖣	Oc	t 1												
	Finish Pro	totyp	e De	sign	♦ M	ay 13	3										
Begin F	rototype	Cons	truct	ion (Ap	r 2											
Fin	ish Proto	type	Cons	truct	ion (Se	p 30										
	Begi	n Pro	totyp	e Te	st 🔷	Aug	20										
		F	Inish	Prot	otyp	e Tes	t 🔷	Jul 2	1								
			Beg	n Fir	al De	esign	♦ J	un 1	2								
							Fini	sh Fi	nal [esig	n 🔷	Jul 2	22				
						В	egin	Prod	uctio	n 🔷	Jan 2	22					
										Fini	sh P	rodu	ction	♦ N	lov 2	5 5	
									E	Begin	Insta	allatio	on 🔷	Aug	20		
											Finis	sh Ins	stalla	tion	♦ A	pr 29	
									Begi	in Tri	gger	Syste	em Te	ests	♦ A	pr 30	
									F	inish	Trig	ger S	yster	n Tes	sts 🐗	Sep	9

Obligations & Resources

Muon Trigger Peak Engineering

Trigger M&S and EDIA Obligations

Calorimeter Trigger Peak Engineering

Calorimeter Trigger Status

Receiver Card

- Designed for 160 MHz
- Being built

13 x 8 bit Adder ASIC • tested > 160 MHz

Backplane for VME & trigger data

- Prototype constructed
- Prototype Clock & Control Card built
- Signal performance excellent @ 160 MHz
- Confirmation of design feasibility

Muon Trigger Status

Operation in Summer '98 test beam

16-ch Comparator ASICs ready

- Excellent performance (1mV offsets)
- Comparator board routed, sent to be manufactured

First Cathode LCT card built

Software being debugged

First Anode LCT card built

Assembly & software next

First Trigger Motherboard built

 Ready for test w/LCT card

Option: Rescope Cal. Trig.

- Receiver & Electron ID Cards: 176 to 132
- Jet Summary Cards & Crates: 22 to 21
- Base Cost reduced by 590K

Impact of Cal. Trig. Rescope

Low Luminosity:

High Luminosity:

Efficiency versus eta cut for trigger descope Efficiency versus eta cut for trigger descope

CMS Decision: Do not rescope Cal. Trig.

Option: Rescope CSC Trigger

- ME*/1 & ME4 processing (cut trigger at $\eta > 1.6$)
- 5 of 7 Fibers/Port Card (only 1 stub per 60°)
 Base Cost reduced by 404K (incl. new design)

Impact of CSC trig. rescope

trigger acceptance for $|\eta|<1.6$ / acceptance for $|\eta|<2.4$ (%) low lumi. trigger thresholds - $p_{\star}^{1\mu}=7$ GeV, $p_{\star}^{2\mu}=4$ GeV

Ratio of descoped CSC to previous baseline muon trigger efficiency for low luminosity running.

CMS Decision: Do not descope in η but approve other changes:

- Fourth Station Removed
 - small loss in efficiency
- New Architecture
 - 60° port cards (fewer)
 - keep links/port card
- New SR/SP design
 - fewer SR's, SP's
 - fewer Crates

New Base Cost:

Reduction by 230K

Committee Concerns & Corrective Actions

From May 97 Lehman Review:

- "Base the assignment of contingency and risk on the maturity of the design, and specify it item by item, rather than globally for each subsystem."
 - This has been done at the lowest level of the WBS and is available in the new MS Project files.
- "Re-evaluate the Level 1 trigger latency in the context of the details of the evolving system design."
 - This was done in a detailed TRIDAS review in November 1997 and is scheduled for reevaluation during an additional review planned for Nov. 1998.

These concerns have been addressed

Conclusions - Trigger

- Trigger algorithms satisfy physics requirements
 - Active simulation program producing results
- Hardware design to implement algorithms
 - Full conceptual design with considerable engineering
 - Extensive prototyping & test program
 - "Proof of principle" of critical items
 - Number of successes already

New Costing

- 4th muon station removed & Architecture revision
- Contingency increased from 30% to 50%
 - Calculated at the lowest WBS level according to US CMS method
- Fully resource loaded schedule
 - Carefully matched to project & base support
 - Experienced team in place